Bibliography - NMR field cycling relaxometry

  Overview
     
  Polymers, Molecular Rhology
Elastomers Diffusion Properties
   
  Biopolymers        
  Confinement Porous media
     
  Chemistry
Morphology      
  Geology
Petrophysics Lubricants    
  Food Science

     
  Medical applications Contrast agents      
  Imaging        
  Instrumentation        

Overview


Polymers, Molecular Rheology
  • Dynamics of linear polybutadienes in solution studied by field cycling 1H NMR
    AA. Herrmann, E. A. Rössler
    ACS Macro Letters 1 (2012) 1339-1342
    doi: 10.1021/mz3004924


  • Protracted crossover to reptation dynamics: a field cycling 1H NMR study including extremely low frequencies
    A. Herrmann, B. Kresse, J. Gmeiner, A. F. Privalov, D. Kruk, F. Fujara and E. A. Rössler
    Macromolecules 45 (2012) 1408 - 1416
    doi:10.1021/ma202489y


  • Glassy, Rouse, and entenglement dynamics as revealed by field cycling 1H NMR relaxometry
    M. Hoffmann, A. Herrmann, A. Abou Elfadl, D. Kruk, M. Wohlfahrt and E. A. Rössler
    Macromolecules, 45 (2012) 2390-2401
    doi:10.1021/ma202371p

  • Field-cycling NMR relaxometry of viscous liquids and polymers
    D. Kruk, A. Herrmann, and E. A. Rössler
    Prog. Nucl. Magn. Reson. Spectrosc. (2011)
    doi:10.1016/j.pnmrs.2011.08.001

  • From simple liquid to polymer melt. Glassy and polymer dynamics studied by fast field cycling NMR relaxometry: Rouse regime
    S. Kariyo, A. Brodin, C. Gainaru, A. Herrmann, J. Hintermeyer, H. Schick, V. N. Novikov and E. A. Rössler
    Macromolecules 41 (2008) 5322 - 5332
    doi:10.1021/ma202758j


  • Process and reaction monitoring by low-field NMR spectroscopy
    F. Dalitz, M. Cudaj, M. Maiwald and G. Guthausen
    Prog. Nucl. Magn. Reson. Spectros. 60 (2012) 52-70
    doi:10.1016/j.pnmrs.2011.11.003


Proteins and Biopolymers

  • Dynamics of hyaluronan aqueous solutions as assessed by fast field cycling NMR relaxometry
    A. Prusova, P. Conte, J. Kucerik, and G. Alonzo
    Anal. Bioanal. Chem. 397 (2010) 3023-3028

    doi:10.1007/s00216-010-3855-9

  • Global and lobal mobility of apocalmodulin monitored through fast-field cycling relaxometry
    V. Borsi, C. Luchinat, and G. Parigi
    Biophys. J. 97 (2009) 1765-1771
    doi:10.1016/j.bpj.2009.07.005


Elastomers

  • Dependence of order and dynamics in polymers and elastomers under deformation revealed by NMR techniques
    S. Stapf and S. Kariyo
    A. Physica Polonica A 108 (2005) 247-261
    http://przyrbwn.icm.edu.pl/APP/PDF/108/a108z204.pdf

  • Influence of cross-link density and deformation on the NMR relaxation dispersion of natural rubber
    S. Kariyo and S. Stapf
    Macromol. 35 (2002) 9253-9255
    doi:10.1021/ma025632f

  • Characterization of polymer networks using the dipolar correlation effect on the stimulated echo and field-cycling nuclear-magnetic resonance relaxometry
    E. Fischer, F. Grinberg, R. Kimmich, and S. Hafner
    J. Chem. Phys. 109 (1998) 846
    doi:10.1063/1.476624

  • Restricted molecular dynamics of polymer chains by means of NMR field cycling relaxometry
    S. Kariyo and S. Stapf
    Macrom. Chem. Phys. 206 (2005) 1300-1312
    doi:10.1002/macp.200500044


Diffusion Properties

  • Translational and rotational diffusion of gylcerol by means of field cycling 1H NMR relaxometry
    D. Kruk, R. Meier and E. A. Rössler
    J. Phys. Chem. B 115 (2011) 951-957
    doi:10.1021/jp110514r

  • Nuclear magnetic resonance relaxometry as a method of measuring translational diffusion coefficients in liquids
    D. Kruk, R. Meier and E. A. Rössler
    Phys. Rev. E 85 (2012) 020201
    doi:10.1103/PhysRevE.85.020201

  • Mean square displacement and reorientational correlation function in entangled polymer melts revealed by field cycling field cycling 1H and 2H NMR relaxometry
    A. Herrmann, B. Kresse, M. Wohlfahrt, I. Bauer, A. F. Privalov, D. Kruk, N. Fatkullin, F. Fujara, E. A. Rössler
    Macromolecules 45 (2012) 6516-6526
    doi: 10.1021/ma301099h

  • Intermolecular relaxation in glycerol as revealed by field cycling 1H NMR relaxometry dilution experiments
    AR. Maier, D. Kruk, J. Gmeiner, E. A. Rössler
    J. Chem. Phys. 136 (2012) 034508

    doi: 10.1063/1.3672096

Confinement, Porous Media

  • Polymer dynamics of polybutadien in nanoscopic confinement as revealed by field cycling 1H NMR
    M. Hoffmann, A. Herrmann, S. Ok, C. Franz, D. Kruk, K. Saalwächter, M. Steinhart, E. A. Rössler
    Macromolecules 44(2011) 4017 - 4021.

    doi:10.1021/jp110514r

  • Field-cycling NMR relaxometry of a liquid crystal above TNI in mesoscopic confinement
    P. J. Sebastião, D. Sousa, A. C. Ribeiro, M. Vilfan, G. Lahajnar, J. Seliger, and S. Žumer
    Phys. Rev. E 72 (2005) 061702
    doi:10.1103/PhysRevE.72.061702

  • A field cycling NMR study of nematic 4-penty-4'-cyanobiphenyl confined in porous glasses
    M. V. Terekhov, S. V. Dvinskikh and A. F. Privalov
    Appl. Magn. Reson. 15 (1998) 363-381
    doi:10.1007/BF03162022


  • Molecular exchange dynamics in partially filled microscale and nanoscale pores of silica glasses by field-cycling nuclear magnetic resonance relaxometry
    C, Mattea, R. Kimmich, I. Ardelean, S. Wonorahardjo, and G. Farrher
    J. CHem. Phys. 121 (2004) 10648-10657
    doi:10.1063/1.1808423


  • Multi-scales nuclear spin relaxation of liquids in porous media. Relaxation magnétique nucléaire multi-échelles des liquides dans les milieux poreux
    J.-P. Korb
    Comptes Rendus Physique 11 (2010) 192-203.
    doi:10.1016/j.crhy.2010.06.015

  • Surface nuclear magnetic relaxation and dynamics of water and oil in macroporous media
    S. Godefroy, J.-P. Korb, M. Fleury, and R. G. Bryant
    Phys. Rev. E 64 (2001) 021605
    doi:10.1103/PhysRevE.64.021605


  • Investigations of polymer dynamics in nanoporous media by field cycling NMR relaxometry and the dipolar correlation effect
    Ravinath Kausika,4, Nail Fatkullinb, Nicola Hqsingc, Rainer Kimmicha
    Magn. Reson. Imag. 25 (2007) 489-492
    doi:10.1016/j.mri.2006.11.018

  • Molecular dynamics in confined monomolecular layer. A field-cycling nuclear magnetic resonance relaxometry study of liquids in porous glass
    S. Stapf and R. Kimmich
    J. Chem. Phys. 103 ( 1995) 2247
    doi:10.1063/1.469700


  • Microstructure of porous media and field-cycling nuclear magnetic relaxation spectroscopy
    S. Stapf, R. Kimmich, and J. Niess
    J. Appl. Phys. 75 (1994) 529-537
    doi:10.1063/1.355834


  • Proton and deuteron field-cycling NMR relaxometry of liquids in porous glasses: Evidence for Levy-walk statistics
    S. Stapf, R. Kimmich, and R.-O. Seitter
    Phys. Rev. Lett. 75 (1995) 2855-2859
    doi:10.1103/PhysRevLett.75.2855


  • NMR investigations of polymer dynamics in a partially filled porous matrix
    S. Ayalur-Karunakaran, B. Blümich and S. Stapf
    Eur. Phys. E 26 (2007) 43-53
    doi:10.1140/epje/i2007-10341-x


  • Translational diffusion of liquids at surfaces of microporous materials: Theoretical analysis of field-cycling magnetic relaxation measurements
    J.-P. Korb, M. Whaley-Hodges, and R. G. Bryant
    Phys. Rev. E 56 (1997) 1934
    http://link.aps.org/doi/10.1103/PhysRevE.56.1934

  • Anomalous surface diffusion of water compared to aprotic liquids in nanopores
    J.-P. Korb, M. W. Hodges, T. Gobron, and R. G. Bryant
    Phys. Rev. E 60 (1999) 3067-3058
    http://dx.doi.org/10.1103/PhysRevE.60.3097


Morphology, Chemistry

  • Magnetic field-cycling NMR and 14N, 17O quadrupole resonance in the explosives pentaerythritol tetranitrate (PETN)
    J. A. S. Smith, T. J. Rayner, M. D. Rowe, J. Barras, N. F. Peirson, A. D. Stevens, and K. Althofer
    J. Magn. Reson. 204 (2010) 139-144
    doi:10.1016/j.jmr.2010.02.019

  • 14N quadrupole resonance and 1H T1 dispersion in the explosive RDX
    J. A. S. Smith, M. Blanz, T. J. Rayner, M. D. Rowe, S. Bedford, and K. Althoefer
    J. Magn. Reson. 213 (2011) 98-106
    doi:10.1016/j.jmr.2011.09.011


  • Effect of porotypic drugs ibuprofen and warfin on global chaotropic unfolding of human serum heme-albumin: A fast-field-cycling 1H-NMR relaxometry study
    G. Fanali, P. Ascenzi, and M. Fasano
    Biophysical Chemistry 129 (2007) 29-35
    doi:10.1016/j.bpc.2007.05.002

  • Dynamics of hyaluronan aqueous solutions as assessed by fast field cycling NMR relaxometry
    A. Průšová, P. Conte, J. Kučerík, and G. Alonzo
    Anal. Bioanal. Chem. 397 (2010) 3023–3028
    doi:10.1007/s00216-010-3855-9


Geology

  • Applicability of solid state fast field cycling NMR relaxometry in understanding relaxation properties of leaves and leaf-litters
    A. E. Berns, S. Bubici, C. de Pasquale, G. Alonzo, and P. Conte
    Organic Geochemistry 42 (2011) 978-984
    doi:10.1016/j.orggeochem.2011.04.006

  • A fast field cycling Nuclear magnetic resonance relaxometry study of natural soil
    A. Pohlmeier, S. Haber-Pohlmeier, and S. Stapf
    Vadose Zone J. 8 (2009) 735-742
    doi:10.2136/vzj2008.0030


  • Water dynamics in ionomer membranes by field-cycling NMR relaxometry
    J.-C. Perrin, S. Lyonnard, A. Guillermo, and P. Levitz
    Magn. Reson. Imag. 25 (2007) 501-504
    doi:10.1016/j.mri.2007.01.002


  • Novel NMR techniques for porous media research
    Yi-Qiao Song
    Cement and Concrete Research 37 (2007) 325-328
    doi:10.1016/j.cemconres.2006.02.013


Petrophysics


Lubricants

  • NMR relaxometry analysis of lubricant oils degradation
    M. Ballari, F. Bonetto, and E. Anoardo
    J. Phys. D: Appl. Phys. 38 (2005) 3746-3750
    doi:10.1088/0022-3727/38/19/025


Food science

  • Dynamics of pistachio oils by proton nuclear magnetic resonance relaxation dispersion
    P. Conte, V. Mineo, S. Bubici, C. de Pasquale, F. Aboud, A. Maccotta, D. Planeta, and G. Alonzo
    Anal. Bioanal. Chem. (2011) 400:1443–1450
    doi:10.1007/s00216-011-4904-8


  • Dissolution mechinism of crystalline cellulose in H3PO4 as assessed by high-field NMR spectroscopy and fast field cycling NMR relaxometry
    P. Conte, A. Maccota, C. de Pasquale, S. Bubici, and G. Alonzo
    J. Agric. Food Chem. 57 (2009) 8748-8752
    http://dx.doi.org/10.1021/jf9022146


Medical applications, contrast agents, biotechnoloy

  • Gd3+-Ion-Doped Upconversion Nanoprobes: Relaxivity Mechanism Probing and Sensitivity Optimization
    Feng Chen, Wenbo Bu, Shengjian Zhang, Jianan Liu, Wenpei Fan, Linagping Zhou, Weijun Peng, Kianlin Shi
    Advanced Functional Materials
    doi:10.1002/adfm.201201469


  • Comparative study of the physicochemical properties of six clinical low molecular weight gadolonium contrast agents
    S. Laurent, L. V. Elst, and R. N. Muller
    Contrast Media & Molecular Imaging 1 (2006) 128-137
    DOI: 10.1002/cmmi.100

  • Dynamics of hyaluronan aqueous solutions as assessed by fast field cycling NMR relaxometry
    A. Průšová, P. Conte, J. Kučerík, and G. Alonzo
    Anal. Bioanal. Chem. 397 (2010) 3023–3028
    doi:10.1007/s00216-010-3855-9


  • Measurement of fibrin concentration by fast field-cycling NMR
    Lionel M. Broche, S. R. Ismail, NN A. Booth, D. J. Lurie
    Magn. Reson. in Med. (2011)
    doi:10.1002/mrm.23117


  • Detection of osteoarthritis in knee and hip Joints by fast field-cycling NMR
    L. M. Broche, G. P. Ashcroft, and D. J. Lurie
    Magnetic Resonance in Medicine 000:000–000 (2011)
    doi:10.1002/mrm.23266

  • High relaxivity gadolinium hydoxypyridonate - viral capsid conjugates: nanosized MRI contrast agents
    A. Datta, J. M. Hooker, M. Botta, M. B. Francis, S. Aime, and K. N. Raymond
    J. Am. Chem. Soc. 130 (2008) 2546-2552
    doi:10.1021/ja0765363

  • Strategies for increasing the sensitivity of gadolinium based MRI cotrast agents
    P. Caravan
    Chem. Soc. Rev. 35 (2006) 512-523
    doi:10.1039/b510982p


Fast field cycling imaging

  • Fast field-cycling magnetic resonance imaging - Imagerie de resonance magnétique en champ cyclé
    D. J. Lurie, S. Aime, S. Baroni, N. A. Booth, L. M. Broche, C.-H. Choi, G. R. Davies, S. Ismail, D. hOgain, and K. J. Pine
    Compt. Rendus Physique 11 (2010) 136-148
    doi:10.1016/j.crhy.2010.06.012


Instrumentation

  • NMR field-cycling at ultra-low magnetic fields
    B. Kresse, A. F. Privalov, and F. Fujara
    Sol. State Nucl. Magn. Reson. 40 (2011) 134-137
    doi:10.1016/j.ssnmr.2011.10.002


  • Fast field-cycling nuclear magnetic resonance spectrometer
    C. Job, J. Zajicek, and M. F. Brown
    Rec. Sci. Instrum. 67 (1996) 2113-2120
    doi:10.1063/1.1147024

  • Magnet design with high B0 homogeneity for fast-field-cycling NMR applications
    O. Lips, A. F. Privalov, S. V. Dvinskikh, and F. Fujara
    J. Magn. Reson. 149 (2001) 22-28
    doi:10.1006/jmre.2000.2279


  • Fast-field-cycling NMR: Applications and instrumentations
    E. Anoardo, G. Galli, and G. Ferrante
    Appl. Magn. Reson. 20 (2001) 365-404
    doi:10.1007/BF03162287